Involvement of estrone-3-sulfate transporters in proliferation of hormone-dependent breast cancer cells.
نویسندگان
چکیده
Although circulating estrone-3-sulfate is a major precursor of biologically active estrogen, permeation across the plasma membrane is unlikely to occur by diffusion because of the high hydrophilicity of the molecule. The object of this study was to clarify the involvement of specific transporter(s) in the supply of estrone-3-sulfate to human breast cancer-derived T-47D cells, which grow in an estrogen-dependent manner. The proliferation of T-47D cells was increased by the addition of estrone-3-sulfate, or estradiol, to the cultivation medium. The initial uptake rate of estrone-3-sulfate kinetically exhibited a single saturable component, with Km and Vmax values of 7.6 microM and 172 pmol/mg of protein/min, respectively. The replacement of extracellular Na+ with Li+, K+, or N-methylglucamine+ had no effect on the uptake of [3H]estrone-3-sulfate. The uptake was strongly inhibited by sulfate conjugates of steroid hormones, but not by estradiol-17beta-glucuronide. Taurocholate and sulfobromophthalein inhibited the uptake, whereas other tested anionic and cationic compounds did not. The expression of organic anion transporting polypeptides, OATP-D and OATP-E, which are candidate transporters of estrone-3-sulfate, was detected by reverse transcription-polymerase chain reaction analysis, although their actual involvement in the uptake of estrogen remains to be clarified. In conclusion, the uptake of estrone-3-sulfate by T-47D cells was mediated by a carrier-mediated transport mechanism, suggesting that the estrogen precursor is actively imported by estrogen-dependent breast cancer cells.
منابع مشابه
Inhibition of estrone sulfatase activity by estrone-3-methylthiophosphonate: a potential therapeutic agent in breast cancer.
Many breast tumors are hormone dependent, and there is evidence that hydrolysis of estrone sulfate (E1S) to estrone, by estrone sulfatase, is an important source of the estrogen which is found in tumors. In this study, we have developed a novel pathway for the synthesis of estrone-3-methylthiophosphonate (E1-3-MTP) and examined its ability to inhibit estrone sulfatase activity in MCF-7 breast c...
متن کاملInhibition of Estrone Sulfatase Activity by Estrone-3-methylthiophosphonate: A Potential Therapeutic Agent in Breast Cancer I
Many breast tumors are hormone dependent, and there is evidence that hydrolysis of estrone sulfate (EIS) to estrone, by estrone sulfatase, is an important source of the estrogen which is found in tumors. In this study, we have developed a novel pathway for the synthesis of estrone-3-methylthiophosphonate (EI-3-MTP) and examined its ability to inhibit estrone suifatase activity in MCF-7 breast c...
متن کاملContribution of Estrone Sulfate to Cell Proliferation in Aromatase Inhibitor (AI) -Resistant, Hormone Receptor-Positive Breast Cancer
Aromatase inhibitors (AIs) effectively treat hormone receptor-positive postmenopausal breast cancer, but some patients do not respond to treatment or experience recurrence. Mechanisms of AI resistance include ligand-independent activation of the estrogen receptor (ER) and signaling via other growth factor receptors; however, these do not account for all forms of resistance. Here we present an a...
متن کاملDifferential role of organic anion-transporting polypeptides in estrone-3-sulphate uptake by breast epithelial cells and breast cancer cells.
The purpose of this study was to investigate the differential expression and function of organic anion-transporting polypeptides (OATPs) in breast epithelial and breast cancer cells. Estrone-3-sulfate (E3S), a substrate for 7 of 11 OATPs, is a predominant source of tumor estrogen in postmenopausal, hormone-dependent patients with breast cancer. Overexpression of certain OATPs (e.g., OATP1A2) re...
متن کاملRegulation of steroid hormone biosynthesis enzymes and organic anion transporters by forskolin and DHEA-S treatment in adrenocortical cells.
Several important physiological functions are regulated by cortisol. Previously, we demonstrated the involvement of human organic anion transporter 3 (hOAT3) in cortisol release. In the present study, we investigated the influence of dehydroepiandrosterone sulfate (DHEA-S) and estrone sulfate on cortisol release in a human adrenocortical cell line (NCI-H295R) compared with forskolin stimulation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 311 3 شماره
صفحات -
تاریخ انتشار 2004